$\Lambda_b \! o \! \Lambda_c \ell ar{ u}$, Tests of HQS, and SU(3) breaking in $B_{(s)} o D_{(s)}^* \ell ar{ u}$

Zoltan Ligeti

2019 Lattice X Intensity Frontier Workshop

BNL, Sep 23-25, 2019

See: Bernlochner, ZL, Robinson, Sutcliffe, arXiv:1808.09464 [PRL]; 1812.07593 [PRD]

Bernlochner and ZL, talk at LHCb analysis meeting, Sep 4, 2019 — LQCD connections

CKM fit: plenty of room for new physics

- SM dominates CP viol. ⇒ KM Nobel
- The implications of the consistency = are often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly V_{ub} & γ) vs. loop
- V_{ub} & V_{cb} : important SM measurements + essential for NP sensitivity

• In loop (FCNC) processes NP/SM $\sim 20\%$ still allowed (mixing, $B \to X \ell^+ \ell^-$, $B \to X \gamma$, ...)

Recent focus: R(D) and $R(D^*)$

■ BaBar, Belle, LHCb: enhanced τ rates, $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)} \tau \bar{\nu})}{\Gamma(B \to D^{(*)} l \bar{\nu})}$ $(l = e, \mu)$

Notation: $\ell = e, \mu, \tau$ and $l = e, \mu$

Future:

Belle II (50/ab, in SM): $\delta R(D^{(*)}) \sim 2(3)\%$

- Big improvements: even if central values change, plenty of room to establish NP
- Focus on the 3 modes that are expected to be most precise in the long trem.

Heavy quark symmetry 101

- Model independent from QCD, used both in some continuum & LQCD methods
- $Q \, \overline{Q}$: positronium-type bound state, perturbative in the $m_Q \gg \Lambda_{\rm QCD}$ limit
- $Q \overline{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q

(A B meson is a lot more complicated than just a $b\bar{q}$ pair)

In the $m_Q\gg \Lambda_{\rm QCD}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^μ [Isgur & Wise]

SU(2n) heavy quark spin-flavor symmetry at fixed v^{μ} [Georgi]

- Similar to atomic physics: $(m_e \ll m_N)$
 - 1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_e independent of m_N]
 - 2. Spin symmetry \sim hyperfine levels almost degenerate $[\vec{s}_e \vec{s}_N \text{ interaction} \rightarrow 0]$

Spectroscopy of heavy-light mesons

• In $m_Q\gg \Lambda_{\rm QCD}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J}=\vec{s}_Q+\vec{s}_l$ and

angular momentum conservation:
$$[\vec{J},\mathcal{H}]=0$$
 heavy quark symmetry: $[\vec{s}_Q,\mathcal{H}]=0$ \Rightarrow $[\vec{s}_l,\mathcal{H}]=0$

For a given s_l , two degenerate states:

$$J_{\pm} = s_l \pm \frac{1}{2}$$

 $\Rightarrow \Delta_i = \mathcal{O}(\Lambda_{\rm QCD})$ — same in B and D sector

Doublets are split by order $\Lambda_{\rm QCD}^2/m_Q$, e.g.:

$$m_{D^*} - m_D \sim 140 \,{\rm MeV}$$

$$m_{B^*} - m_B \sim 45 \, \mathrm{MeV}$$

ratio
$$\sim m_c/m_b$$

Basics of $B o D^{(*)}\ellar u$ or $\Lambda_b o \Lambda_c\ellar u$

- In the $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, configuration of brown muck only depends on the four-velocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{\rm QCD}^{-1}$ weak current changes $b \to c$ i.e.: $\vec{p}_b \to \vec{p}_c$ and possibly \vec{s}_Q flips

In $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, brown muck only feels $v_b \to v_c$

• Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w=v\cdot v'$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

- $\xi(1) = 1$, because at "zero recoil" configuration of brown muck not changed at all
- Same holds for $\Lambda_b \to \Lambda_c \ell \bar{\nu}$, different Isgur-Wise fn, $\xi \to \zeta$ [also satisfies $\zeta(1) = 1$]

$\Lambda_b o \Lambda_c \ell ar u$

Ancient knowledge: baryons simpler than mesons

Used to be well known — forgotten by experimentalists as well as theorists...

VOLUME 75, NUMBER 4

PHYSICAL REVIEW LETTERS

24 July 1995

Form Factor Ratio Measurement in $\Lambda_c^+ \to \Lambda e^+ \nu_e$

G. Crawford, ¹ C. M. Daubenmier, ¹ R. Fulton, ¹ D. Fujino, ¹ K. K. Gan, ¹ K. Honscheid, ¹ H. Kagan, ¹ R. Kass, ¹ J. Lee, ¹ [CLEO]

element $|V_{cs}|$ is known from unitarity [1]. Within heavy quark effective theory (HQET) [2], Λ -type baryons are more straightforward to treat than mesons as they consist of a heavy quark and a spin and isospin zero light diquark.

Ancient knowledge: baryons simpler than mesons

Used to be well known — forgotten by experimentalists as well as theorists...

VOLUME 75, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JULY 1995

Form Factor Ratio Measurement in $\Lambda_c^+ \to \Lambda e^+ \nu_e$

G. Crawford, ¹ C. M. Daubenmier, ¹ R. Fulton, ¹ D. Fujino, ¹ K. K. Gan, ¹ K. Honscheid, ¹ H. Kagan, ¹ R. Kass, ¹ J. Lee, ¹ [CLEO]

element $|V_{cs}|$ is known from unitarity [1]. Within heavy quark effective theory (HQET) [2], Λ -type baryons are more straightforward to treat than mesons as they consist of a heavy quark and a spin and isospin zero light diquark.

Combine LHCb measurement of $d\Gamma(\Lambda_b\to\Lambda_c\mu\bar{\nu})/dq^2$ shape [1709.01920] with LQCD results for (axial-)vector form factors [1503.01421]

[Bernlochner, ZL, Robinson, Sutcliffe, 1808.09464; 1812.07593]

Intro to $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

- Ground state baryons are simpler than mesons: brown muck in (iso)spin-0 state
- SM: 6 form factors, functions of $w=v\cdot v'=(m_{\Lambda_b}^2+m_{\Lambda_c}^2-q^2)/(2m_{\Lambda_b}m_{\Lambda_c})$ $\langle \Lambda_c(p',s')|\bar{c}\gamma_\nu b|\Lambda_b(p,s)\rangle=\bar{u}_c(v',s')\Big[f_1\gamma_\mu+f_2v_\mu+f_3v'_\mu\Big]u_b(v,s)$ $\langle \Lambda_c(p',s')|\bar{c}\gamma_\nu\gamma_5 b|\Lambda_b(p,s)\rangle=\bar{u}_c(v',s')\Big[g_1\gamma_\mu+g_2v_\mu+g_3v'_\mu\Big]\gamma_5\,u_b(v,s)$

Heavy quark limit: $f_1 = g_1 = \zeta(w)$ Isgur-Wise fn, and $f_{2,3} = g_{2,3} = 0$ [$\zeta(1) = 1$]

• Include α_s , $\varepsilon_{b,c}$, $\alpha_s \varepsilon_{b,c}$, ε_c^2 : $m_{\Lambda_{b,c}} = m_{b,c} + \bar{\Lambda}_{\Lambda} + \dots$, $\varepsilon_{b,c} = \bar{\Lambda}_{\Lambda}/(2m_{b,c})$ $(\bar{\Lambda}_{\Lambda} \sim 0.8 \, \text{GeV} \, \text{larger than } \bar{\Lambda} \, \text{for mesons, enters via eq. of motion} \Rightarrow \text{expect worse expansion?})$

$$f_1 = \zeta(w) \left\{ 1 + \frac{\alpha_s}{\pi} C_{V_1} + \varepsilon_c + \varepsilon_b + \frac{\alpha_s}{\pi} \left[C_{V_1} + 2(w-1)C'_{V_1} \right] (\varepsilon_c + \varepsilon_b) + \frac{\hat{b}_1 - \hat{b}_2}{4m_c^2} + \dots \right\}$$

• No $\mathcal{O}(\Lambda_{\mathrm{QCD}}/m_{b,c})$ subleading Isgur-Wise function, only 2 at $\mathcal{O}(\Lambda_{\mathrm{QCD}}^2/m_c^2)$

[Falk & Neubert, hep-ph/9209269]

HQET is more constraining than in meson decays!

 $B o D^{(*)} \ell \bar{
u}$: 6 sub-subleading Isgur-Wise functions at ${\cal O}(\Lambda_{
m QCD}^2/m_c^2)$

[w/ LCSR, 1908.09398]

Fits and form factor definitions

Standard HQET form factor definitions: $\{f_1, g_1\} = \zeta(w) \left[\mathbf{1} + \mathcal{O}(\alpha_s, \varepsilon_{c,b}) \right]$ $\{f_{2,3}, g_{2,3}\} = \zeta(w) \left[\mathbf{0} + \mathcal{O}(\alpha_s, \varepsilon_{c,b}) \right]$

Form factor basis in LQCD calculation: $\{f_{0,+,\perp}, g_{0,+,\perp}\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

LQCD results published as fits to 11 or 17 BCL parameters, including correlations

All 6 form factors computed in LQCD \sim Isgur-Wise fn \Rightarrow despite good precision, limited constraints on subleading terms and their w dependence [Detmold, Lehner, Meinel, 1503.01421]

• Only 4 parameters (and m_b^{1S}): $\{\zeta',\ \zeta'',\ \hat{b}_1,\ \hat{b}_2\}$

$$\zeta(w) = 1 + (w - 1)\zeta' + \frac{1}{2}(w - 1)^2\zeta'' + \dots$$
 $b_{1,2}(w) = \zeta(w)(\hat{b}_{1,2} + \dots)$

(Expanding in w-1 or in conformal parameter, z, makes negligible difference)

ullet Current LHCb and LQCD data do not yet allow constraining ζ''' and/or $\hat{b}'_{1,2}$

Fit to lattice QCD form factors and LHCb (1)

• Fit 6 form factors w/ 4 parameters: $\zeta'(1)$, $\zeta''(1)$, \hat{b}_1 , \hat{b}_2 [LQCD: Detmold, Lehner, Meinel, 1503.01421]

Fit to lattice QCD form factors and LHCb (2)

Our fit, compared to the LQCD fit to LHCb:

• Obtain: $R(\Lambda_c) = 0.324 \pm 0.004$

A factor of ~ 3 more precise than LQCD prediction — data constrains combinations of form factors relevant for predicting $R(\Lambda_c)$

We do not follow: "In order to determine the shape of the Isgur-Wise function $\xi_B(w)$, we use the square root of $dN_{\rm corr}/dw$... evaluated at the midpoint in the seven unfolded w bins." [LHCb, 1709.01920]

The fit requires the $1/m_c^2$ terms

- E.g., fit results for g_1 blue band shows fit with $\hat{b}_{1,2}=0$
- Find: $\hat{b}_1 = -(0.46 \pm 0.15) \, \mathrm{GeV}^2$... of the expected magnitude

Well below the model-dependent estimate: $\hat{b}_1=-3\bar{\Lambda}_{\Lambda}^2\simeq -2\,{
m GeV}^2$ [Falk & Neubert, hep-ph/9209269]

• Expansion in $\Lambda_{\rm QCD}/m_c$ appears well behaved (contrary to some claims in literature)

Ratios of form factors

• $f_1(q^2)/g_1(q^2) = \mathcal{O}(1)$, whereas $\left\{ f_{2,3}(q^2)/f_1(q^2), \ g_{2,3}(q^2)/g_1(q^2) \right\} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

• It all looks rather good!

BSM: tensor form factors — issues?

There are 4 form factors

We get parameter free predictions!

HQET:
$$h_1 (= \widetilde{h}_+) = \mathcal{O}(1)$$

 $h_{2,3,4} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

LQCD basis: all 4 form factors calculated are $\mathcal{O}(1)$

[Datta, Kamali, Meinel, Rashed, 1702.02243]

Compare at $\mu = \sqrt{m_b m_c}$

 Heavy quark symmetry breaking terms consistent (weakly constrained by LQCD)

If tensions between data and SM remain, we'll have to sort out this difference

More to measure...

• What is the maximal information that the $\Lambda_b \to \Lambda_c \mu \bar{\nu}$ decay can give us?

 $\Lambda_c \to pK\pi$ complicated, $\Lambda_c \to \Lambda\pi \, (\to p\pi\pi)$ looses lots of statistics

• If Λ_c decay distributions are integrated over, but θ is measured (angle between the \vec{p}_{μ} and \vec{p}_{Λ_c} in $\mu\bar{\nu}$ rest frame), then maximal info one can get:

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})}{\mathrm{d}w\,\mathrm{d}\cos\theta} = \frac{3}{8} \Big[(1 + \cos^2\theta)\,H_T(w) + 2\cos\theta\,H_A(w) + 2(1 - \cos^2\theta)\,H_L(w) \Big]$$
(forward-backward asym.)

Measuring the 3 terms would give more information than just $d\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})/dq^2$

These results will be included in Hammer CC

[Bernlochner, Duell, ZL, Papucci, Robinson, soon]

SU(3) breaking in $B_{(s)} o D_{(s)}^*\ellar
u$

SU(3) breaking in $B_{(s)} o D_{(s)}\ellar u$

- lacktriangle We know little directly from the data about SU(3) breaking in semileptonic decays
- Isgur-Wise fn: "The correction is velocity dependent, but vanishes at zero recoil as required by heavy quark symmetry", about 5% at $w_{
 m max}$ [Jenkins, PLB 281 (1992) 331]

Calculations showing that $\mathcal{O}(20\%)$ corrections to SU(3) symmetry are possible

[e.g: Boyd & Grinstein, hep-ph/9502311; Eeg, Fajfer, Kamenik, arXiv:0807.0202]

• LQCD mostly at w=1 so far; FLAG review, Sec.8.4, results for both: [1902.08191]

$$\mathcal{G}_{B o D}(1)=1.035\pm0.040$$
 $\mathcal{G}_{Bs o Ds}(1)=1.068\pm0.040$ $R(D)=0.300\pm0.008$ $R(D_s)=0.301\pm0.006$ [1703.09728 \leftrightarrow FLAG] $\mathcal{F}_{B o D^*}(1)=0.895\pm0.026$ $\mathcal{F}_{Bs o D_s^*}(1)=0.883\pm0.030$

For decay constants, SU(3) breaking is substantial: $f_{B_s}/f_B \approx 1.21 \pm 0.01$

SU(3) breaking in $B_{(s)} o D_{(s)}\ellar u$ (cont.)

Some new/old considerations suggesting possibly sizable effects:

Bjorken and Voloshin sum rules relate the behavior of $B_{(s)} \to D_{(s)}^{(*)}$ ground state transition to decays to excited states; e.g., Voloshin sum rule [PRD 46 (1992) 3062]

$$\rho^2 = -\frac{\mathrm{d}}{\mathrm{d}w} \frac{\mathrm{d}\Gamma}{\mathrm{d}w}\Big|_{w=1} < \frac{1}{4} + \frac{m_M - m_Q}{2(m_{M_1} - m_M)} + \dots$$

where $m_{M_1} - m_M$ is the gap to the first excited meson state above $D_{(s)}^{(*)}$

• Expect: slope parameter, ρ^2 , increases, if $B_{(s)} \to D_{(s)}^{**}$ rates increase if $m_{M_1} - m_M$ decreases

Discovered in 2003: $m_{D_{s0}^{*\pm}} - m_{D_s^{\pm}} \approx 206 \, \mathrm{MeV}$, but $m_{D_0^{*\pm}} - m_{D^{\pm}} \approx 484 \, \mathrm{MeV}$

• It will be interesting to see if these arguments for a steeper fall-off play out, or are compensated by some other effects — will (eventually) measure SU(3) breaking

Some probes of SU(3) breaking

- ullet Compare shapes of $\mathrm{d}\Gamma/\mathrm{d}w$
- Factorization may work better in $B_s \to D_s^{(*)} \pi$ than $B \to D^{(*)} \pi$, tells us $\mathrm{d}\Gamma/\mathrm{d}w\big|_{w_{\mathrm{max}}}$

Interesting for hadronic dynamics as well, to better understand: [hep-ph/0312319]

$$|A(\bar{B}^0 \to D^+\pi^-)| = |T + E|, \quad |A(B^- \to D^0\pi^-)| = |T + C|, \quad |A(B_s \to D_s^-\pi^+)| = |T|$$

Since $\tau_{B^0} \approx \tau_{B_s}$, we can compare directly the branching ratios:

[1]
$$\mathcal{B}(B^0 \to D\pi) = (2.52 \pm 0.13) \times 10^{-3}$$

[2]
$$\mathcal{B}(B^0 \to D^*\pi) = (2.74 \pm 0.13) \times 10^{-3}$$

[3]
$$\mathcal{B}(B_s \to D_s \pi) = (3.00 \pm 0.23) \times 10^{-3}$$
 [LHCb, only 0.37/fb]

[4]
$$\mathcal{B}(B_s \to D_s^* \pi) = (2.0 \pm 0.5) \times 10^{-3}$$

Central values: [1] < [3] and [2] > [4] seem puzzling, warrants more precise measurements

• Improvements in $B_{(s)} o D_{(s)}^{**}\pi$ and $B_{(s)} o D_{(s)}^{**}\ell\bar{\nu}$ rate measurements

$D_{(s)}^{**}$ states: surprises in 1606.09300 (for me?)

• Mass splitting: $m_{D_1^*} - m_{D_0^*} \sim m_{D^*} - m_D$?

Poor consistency of $m_{D_0^*}$ measurements

Parameter	$ar{\Lambda}$	$ar{\Lambda}'$	$ar{\Lambda}^*$
Value [GeV]	0.40	0.80	0.76

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0+	2349	236
D_1^*	$\frac{1}{2}^{+}$	1+	2427	384
D_1	$\frac{3}{2}^{+}$	1+	2421	31
D_2^*	$\frac{3}{2}^{+}$	2+	2461	47

• $\mathcal{B}(B \to D_0^*\pi)$ puzzling: $\ll D_1\pi$ and $D_2^*\pi$ breakdown of factorization?

Small fraction of BaBar & Belle data + LHCb

Decay mode	Branching fraction
$B^0 \to D_2^{*-} \pi^+$	$(0.59 \pm 0.13) \times 10^{-3}$
$B^0 \to D_1^- \pi^+$	$(0.75 \pm 0.16) \times 10^{-3}$
$B^0 \to D_0^{*-} \pi^+$	$(0.12 \pm 0.02) \times 10^{-3}$

• $D_{s0}^*(2317)$: orbitally excited state or "molecule"? Nice for LHCb, $\Gamma_{D_{s0}^*} < 4\,\mathrm{MeV}$

If D_{s0}^* is excited $c\bar{s}$ state, predict $\mathcal{B}(D_{s0}^*\to D_s^*\gamma)/\mathcal{B}(D_{s0}^*\to D_s\pi)$ above CLEO bound, <0.059 [Mehen & Springer, hep-ph/0407181; Colangelo & De Fazio, hep-ph/0305140; Godfrey, hep-ph/0305122]

CLEO used 13.5/fb, the Belle bound < 0.18 used 87/fb, the BaBar bound < 0.16 used 232/fb

Final comments

Conclusions

- Measurable NP contribution to $b \to c\ell\bar{\nu}$ would imply NP at a fairly low scale
- $\Lambda_b \to \Lambda_c \ell \bar{\nu}$ will provide important cross checks, ultimate uncertainty near $R(D^{(*)})$
- HQET: model independent, more predictive in $\Lambda_b \to \Lambda_c \ell \bar{\nu}$ than in $B \to D^{(*)} \ell \bar{\nu}$
- Clear evidence for $\Lambda_{\rm QCD}/m_c^2$ term in an exclusive decay (independent of $|V_{cb}|$)
- ullet The expansion in $\Lambda_{
 m QCD}/m_c^2$ appears well behaved
- LQCD important: all form factors in full phase space, SU(3) breaking (LHCb)
- $B \to D^* \ell \bar{\nu}$ and $|V_{cb}|$: Lots of progress, many open issues, feel free to ask...
- Belle II and LHCb data + theory progress
 - ⇒ great improvements in SM measurements and in sensitivity to new physics

Extra slides

 $|V_{cb}|$ from $B o D^*\ellar
u$

Making the most of heavy quark symmetry

• "Idea": fit 4 functions (1 leading-order + 3 subleading Isgur-Wise functions) from $B \to D^{(*)} l \bar{\nu} \implies \mathcal{O}(\Lambda_{\rm QCD}^2/m_{c,b}^2\,,\,\alpha_s^2)$ uncertainties

[Bernlochner, ZL, Papucci, Robinson, 1703.05330]

- Observables: in B o Dlar
 u: $\mathrm{d}\Gamma/\mathrm{d}w$ (Only Belle published fully corrected distributions) in $B o D^*lar
 u$: $\mathrm{d}\Gamma/\mathrm{d}w$ $R_{1,2}(w)$ form factor ratios
 - Systematically improvable with more data
 - $\mathcal{O}(\Lambda_{\mathrm{QCD}}^2/m_{c,b}^2)$ uncertainties can be constrained comparing w/ lattice form fact.
- Considered many fit scenarios, with/without LQCD and/or QCD sum rule inputs

With all LQCD and no QCDSR input:

Fitting only unfolded Belle data

$$|V_{cb}|_{\rm BLPR} = (39.1 \pm 1.1) \times 10^{-3}$$

SM predictions for R(D) and $R(D^{st})$

Small variations: heavy quark symmetry & phase space leave little wiggle room

Scenario	R(D)	$R(D^*)$	Correlation	
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%	
$L_{w=1} + SR$	0.291 ± 0.005	0.255 ± 0.003	57%	
NoL	0.273 ± 0.016	0.250 ± 0.006	49%	
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%	
$L_{w\geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%	
$L_{w\geq 1} + SR$	0.299 ± 0.003	0.257 ± 0.003	44%	
$th: L_{w \geq 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%	
Data [HFLAV]	0.340 ± 0.030	0.295 ± 0.014	-38%	
Fajfer et al. '12	_	0.252 ± 0.003		
Lattice [FLAG]	0.300 ± 0.008			
Bigi, Gambino '16	0.299 ± 0.003			
Bigi, Gambino, Schacht '17		0.260 ± 0.008		
Jaiswal, Nandi, Patra '17	0.302 ± 0.003	0.257 ± 0.005	13%	
SM [HFLAV]	0.299 ± 0.003	0.258 ± 0.005	_	

The CLN fits used 1997–2017

• Role of QCD SR in CLN: $R_{1,2}(w) = \underbrace{R_{1,2}(1)}_{\text{fit}} + \underbrace{R'_{1,2}(1)}_{\text{fixed}} (w-1) + \underbrace{R''_{1,2}(1)}_{\text{fixed}} (w-1)^2/2$

In HQET:
$$R_{1,2}(1) = 1 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$$
 $R_{1,2}^{(n)}(1) = 0 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$

The $\mathcal{O}(\Lambda_{\mathrm{QCD}}/m_{c,b})$ terms are determined by 3 subleading Isgur-Wise functions

• Inconsistent fits: same param's determine $R_{1,2}(1)-1$ (fit) and $R_{1,2}^{(1,2)}(1)$ (QCDSR)

Sometimes calculations using QCD sum rules are called the HQET predictions

Devised fits to "interpolate" between BGL and CLN [Bernlochner, ZL, Robinson, Papucci, 1708.07134]

form factors	BGL CLN		CLNnoR	noHQS	
axial $\propto \epsilon_{\mu}^*$	b_0, b_1	$h_{A_1}(1), \ \rho_{D^*}^2$	$h_{A_1}(1), \ \rho_{D^*}^2$	$h_{A_1}(1), \ \rho_{D^*}^2, \ c_{D^*}$	
vector	a_0, a_1	$\int R_1(1)$	$\int R_1(1), R'_1(1)$	$\int R_1(1), R'_1(1)$	
axial (\mathcal{F}_1)	c_1, c_2	$R_2(1)$	$R_2(1), R'_2(1)$	$R_2(1), R'_2(1)$	

Relaxing constraints on $R'_{1,2}(1)$, fit results similar to BGL

Nested hypothesis tests

Optimal BGL fit parameter choice, given available data? (upper: χ^2 , lower: $|V_{cb}| \times 10^3$)

n_a	1	2	3	1	2	3	1	2	3
1	33.2 38.6 ± 1.0	31.6 38.6 ± 1.0	31.2 38.6 ± 1.0	33.0 39.0 ± 1.5	29.1 40.7 ± 1.6	28.9 40.7 ± 1.6	30.4 40.7 ± 1.7	29.1 40.6 ± 1.8	28.9 40.6 ± 1.8
2	32.9 38.8 ± 1.1	31.3 38.7 ± 1.1	31.1 38.8 ± 1.0	32.7 39.5 ± 1.7	$27.7 \ 41.7 \pm 1.8$	27.7 41.6 ± 1.8	29.2 41.8 ± 2.0	27.7 41.8 ± 2.0	27.7 41.7 ± 2.0
3	31.7 39.0 ± 1.1	31.3 38.6 ± 1.2	31.0 38.6 ± 1.1	29.1 41.9 ± 2.0	27.7 41.8 ± 2.0	27.6 41.7 ± 2.0	29.2 41.8 ± 2.0	27.6 41.7 ± 1.9	23.2 41.4 ± 2.0
	$n_b = 1$ $n_b = 1$			$n_b = 2$	$n_b = 3$				

- Fit w/ 1 param added / removed: $\mathrm{BGL}_{(n_a\pm 1)n_bn_c}$, $\mathrm{BGL}_{n_a(n_b\pm 1)n_c}$, $\mathrm{BGL}_{n_an_b(n_c\pm 1)}$
- Accept descendant (parent) if $\Delta \chi^2$ is above (below) a boundary, say, $\Delta \chi^2 = 1$
- Repeat until "stationary" fit is found, preferred over its parents and descendants
- If multiple stationary fits, choose smallest N, then smallest χ^2 (333 is an overfit!)

Start from small N, to avoid overfitting e.g.: $\begin{cases} 111 \rightarrow 211 \rightarrow 221 \rightarrow 222 \\ 121 \rightarrow 131 \rightarrow 231 \rightarrow 232 \rightarrow 222 \end{cases}$

Lattice QCD, preliminary results

FNAL/MILC and JLQCD are both working on the $B \to D^* \ell \bar{\nu}$ form factors Independent formulations: staggered vs. Mobius domain-wall actions

Therefore, this issue is still open. These parametrizations should be eventually replaced by a lattice-based parametrization.

[T. Kaneko, JLQCD poster at Lattice 2018, 1811.00794; also Fermilab/MILC, 1710.09817I]

• No qualitative difference between LQCD calculation at w=1, or slightly above

